Муниципальное общеобразовательное учреждение Верхнетуломская средняя общеобразовательная школа муниципального образования Кольский район Мурманской области

Обсуждено и принято на МО

Согласовано заместитель директора по УВР УТВЕРЖДАЮ директор инсолы Е.Я.Козлова

Приложение к Основной образовательной программе основного общего среднего общего образования, утвержденной приказом № 154 от 01.09. 2021г

Рабочая программа

учебного предмета

химия

10-11 классы

на 2021/2022учебный год

Бердега Г.В., Учитель химии и биологии

2021 год П.г.т. Верхнетуломский

Пояснительная записка

Рабочая программа по химии для 10-11 классов составлена на основе:

- Федерального государственного стандарта среднего общего образования по химии;
- Примерной программы среднего общего образования по химии;
- Авторской программы по химии О.С. Габриеляна.
- Учебного плана образовательного учреждения
- Федерального перечня учебников, рекомендованных (допущенных) Министерством образования к использованию в образовательном процессе в образовательных учреждениях,
- Методического письма о преподавании учебного предмета «Химия» в общеобразовательных организациях Мурманской области в 2021/2022 учебном году

Программа курса химии рассчитана на 2 года из расчета 2 часа в неделю.

Предлагаемая программа предусматривает следующую организацию процесса обучения:

- 10 класс 68 часов
- 11 класс 68 часа

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА 10-11 КЛАССА

Личностные результаты:

- 1. формирование чувства гордости за российскую химическую науку;
- 2. формирование целостного мировоззрения, соответствующего современному уровню развития химии как науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- 3. формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору будущей профессии;
- 4. формирование коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 5. формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- 6. формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными инструментами и техническими средствами информационных технологий;
- 7. формирование основ экологического сознания на основе признания ценности жизни во всех её проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- 8. развитие способности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнерами во время учебной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная, поисково-исследовательская, проектная, и др.)

Метапредметные результаты:

- 1. овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поиска средств её осуществления;
- 2. умение планировать пути достижения целей на основе самостоятельного анализа условий и средств достижения этих целей, выделять альтернативные способы достижения цели и

- выбирать наиболее эффективный способ, осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
- 3. понимание проблемы, умение ставить вопросы, выдвигать гипотезу, давать определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать собственную позицию, формулировать выводы и заключения;
- 4. формирование и развитие компетентности в области использования инструментов и технических средств информационных технологий (компьютеров и программного обеспечения) как инструментальной основы развития коммуникативных и познавательных универсальных учебных действий;
- 5. умение извлекать информацию из различных источников (включая средства массовой информации, компакт-диски учебного назначения, ресурсы сети Интернет), умение свободно пользоваться справочной литературой, в том числе и на электронных носителях, соблюдать нормы информационной избирательности, этики;
- 6. умение на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- 7. умение организовать свою жизнь в соответствии с представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия, культуры и социального взаимодействия;
- 8. умение выполнять познавательные и практические задания, в том числе проектные;
- 9. формирование умения самостоятельно и аргументировано оценивать свои действия и действия одноклассников, содержательно обосновывая правильность или ошибочность результата, а также свои возможности в достижении цели определенной сложности;
- 10. умение работать в группе.

Предметные результаты:

- 1. осознание объективной значимости основ химической науки как области современного естествознания, компонента общей культуры и практической деятельности человека в условиях возрастающей «химизации» многих сфер жизни современного общества; осознание химических превращений органических и неорганических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 2. овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с органическими веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение;
- 3. формирование систематизированных представлений об органических веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- 4. формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также обусловленность применения веществ особенностями их свойств;
- 5. приобретение опыта применения химических методов изучения веществ и их превращений: наблюдение за свойствами веществ, условиями протекания химических реакций; проведение опытов и химических экспериментов различной сложности с использованием лабораторного оборудования и приборов;
- 6. умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием;
- 7. овладение приемами работы с информацией химического содержания, представленной в разной форме;

8. создание основы для формирования интереса к расширенному и углубленному получению химических знаний для дельнейшего их применения в качестве сферы своей профессиональной деятельности.

Кроме того, в результате изучения химии ученик должен: **знать и понимать:**

- химические понятия: углеродный скелет, радикалы, функциональные группы, гомология, структурная и пространственная изомерия, пространственное строение органических соединений, гибридизация орбиталей, индуктивный и мезомерный эффекты, электрофил, нуклеофил; вещество, химический элемент, атом, молекула, масса атомов и молекул, ион, радикал, аллотропия, нуклиды и изотопы, атомные s-, p-, d-орбитали, химическая связь, электроотрицательность, валентность, степень окисления, гибридизация орбиталей, пространственное строение молекул, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, комплексные соединения, дисперсные системы, истинные растворы, электролитическая диссоциация, кислотно-основные реакции в водных растворах, гидролиз, окисление и восстановление, электролиз, скорость химической реакции, механизм реакции, катализ, тепловой эффект реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия, основные типы реакций в неорганической и органической химии;
- *основные законы химии*: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро, закон Гесса, закон действующих масс в кинетике и термодинамике;
- *основные теории химии:* теорию строения органических соединений; строения атома, химической связи, электролитической диссоциации, кислот и оснований, строения органических соединений (включая стереохимию), химическую кинетику и химическую термодинамику;
- *классификацию и номенклатуру* органических и неорганических соединений; природные источники углеводородов и способы их переработки;
- *важнейшие вещества и материалы:* основные металлы и сплавы, графит, кварц, стекло, цемент, минеральные удобрения, минеральные и органические кислоты, щелочи, аммиак, углеводороды, фенол, анилин, метанол, этанол, этиленгликоль, глицерин, формальдегид, ацетальдегид, ацетон, глюкоза, сахароза, крахмал, клетчатка, аминокислоты, белки, искусственные волокна, каучуки, пластмассы, жиры, мыла и моющие средства.

Уметь:

- называть изученные вещества по «тривиальной» или международной номенклатуре:
- объяснять зависимость свойств химического элемента и образованных им веществ от положения в периодической системе Д.И. Менделеева, от их состава и строения; природу и способы образования химической связи; зависимость скорости химической реакции от различных факторов, зависимость свойств веществ от их состава и строения; реакционную способность органических соединений от строения молекул;
- определять: валентность и степень окисления химических элементов, заряд иона, тип химической связи, пространственное строение молекул, тип кристаллической решетки, характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, изомеры и гомологи, принадлежность веществ к различным классам органических соединений, типы реакций в органической и неорганической химии, характер взаимного влияния атомов в молекулах;
- характеризовать s-, p- и d-элементы по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических соединений; общие химические свойства органических соединений; строение и свойства органических веществ (углеводородов, спиртов, фенолов, альдегидов и кетонов, карбоновых кислот, аминов, аминокислот и углеводов;

- выполнять химический эксперимент по распознаванию важнейших неорганических и органических конкретных веществ;
- проводить расчёты по химическим формулам и уравнениям реакций
- осуществлять самостоятельный поиск химической информации с использованием различных источников.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- понимания глобальных проблем, стоящих перед человечеством, экологических, энергетических и сырьевых;
- объяснения химических явлений, происходящих в природе, быту и на производстве;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасной работы с веществами в лаборатории, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- распознавания и идентификации важнейших веществ и материалов;
- оценки качества питьевой воды и отдельных пищевых продуктов;
- критической оценки достоверности химической информации, поступающей из различных источников.

СОДЕРЖАНИЕ КУРСА 10 класс (68ч)

Введение (1 ч)

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук. Природные, искусственные и синтетические соединения.

Тема 1. Теория строения органических соединений (3 ч)

Валентность. Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Химические формулы и модели молекул в органической химии.

Демонстрации. Модели молекул гомологов и изомеров органических соединений.

Тема 2. Углеводороды и их природные источники (21 ч)

Природный газ. А л к а н ы. Принципы классификации органических соединений. Систематическая международная номенклатура и принципы образования названий органических соединений.

Гомологический ряд, изомерия и номенклатура алканов.

Химические свойства алканов (на примере метана и этана): горение, замещение, разложение и дегидрирование. Горение метана как один из основных источников тепла в промышленности и быту. Нахождение в природе и применение алканов на основе свойств. Понятие о циклоалканах.

Алкены. Этилен, его получение (дегидрированием этана и дегидратацией этанола). Химические свойства (на примере этилена:): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование), горение,

качественные реакции, полимеризация. Полиэтилен, его свойства и применение. Применение этилена на основе свойств.

Алкадиенах как углеводородах с двумя двойными связями. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Применение каучука и резины.

Алкинов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Ацетилен, его получение пиролизом метана и карбидным способом. Строение молекулы ацетилена. Химические свойства (на примере ацетилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения полимеров и других полезных продуктов. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Применение ацетилена.

Арены. Бензол как представитель ароматических углеводородов. *Строение молекулы бензола*. Получение бензола из гексана и ацетилена. Химические свойства бензола: горение, галогенирование, нитрование. Применение бензола на основе свойств.

Н е ф т ь. Состав и переработка нефти. Нефтепродукты. Бензин и понятие об октановом числе.

Демонстрации. Горение ацетилена. Отношение этилена, ацетилена и бензола к раствору перманганата калия. Получение этилена реакцией дегидратации этанола, ацетилена карбидным способом. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов.

Лабораторные опыты.

1. Определение элементного состава органических соединений. 2.Изготовление моделей молекул углеводородов. 3. Обнаружение непредельных соединений в жидких нефтепродуктах. 4. Получение и свойства ацетилена. 5. Ознакомление с коллекцией «Нефть и продукты ее переработки».

Расчетные задачи.

Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания.

Контрольная работа №1 по теме: «Углеводороды»

Тема 3. Кислородсодержащие органические соединения и их природные источники (20 ч)

Единство химической организации живых организмов. Химический состав живых организмов.

С п и р т ы. Классификация, номенклатура, изомерия спиртов. Метанол и этанол как представители предельных одноатомных спиртов.Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Представление о водородной связи. Химические свойства на примере метанола и этанола: горение, взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.

Понятие о предельных многоатомных спиртах. Глицерин и зтиленгликоль как представители многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение этиленгликоля и глицерина.

Ф е н о л.Получение фенола коксованием каменного угля. Строение молекулы фенола.Взаимное влияние атомов в молекуле фенола. *Химические свойства:* взаимодействие с натрием, гидроксидом натрия, бромом и азотной кислотой. Применение фенола на основе свойств.

Альдегидов окислением соответствующих спиртов. Химические свойства альдегидов: окисление в соответствующую кислоту и восстановление в соответствующий спирт. Применение формальдегида и ацетальдегида на основе свойств.

К а р б о н о в ы е к и с л о т ы. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с неорганическими кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Представленияе о высших карбоновых кислотах на примере пальмитиновой и стеариновой.

С л о ж н ы е э ф и р ы иж и р ы. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств. Жиры как сложные эфиры. Растительные и животные жиры, их состав. Распознавание растительных жиров на основании их непредельного характера. Химические свойства жиров: гидролиз (омыление) и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла́ как соли высших карбоновых кислот. Моющие свойства мыла.

У г л е в о д ы. Углеводы, значение углеводов в живой природе и в жизни человека. Глюкоза - вещество с двойственной функцией - альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, брожение (молочнокислое и спиртовое). Применение глюкозы на основе свойств. Сахароза. Гидролиз сахарозы. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала и целлюлозы (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Применение и биологическая роль углеводов.

Идентификация органических соединений. Генетическая связь между классами органических соединений. Типы химических реакций в органической химии.

Демонстрации. Окисление спирта в альдегид. Качественная реакция на многоатомные спирты. Коллекция «Каменный уголь и продукты его переработки». Качественные реакции на фенол. Реакция «серебряного зеркала» альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоты с помощью гидроксида меди (II). Получение уксусноэтилового эфира. Качественная реакция на крахмал.

Лабораторные опыты. 6. Свойства этилового спирта. 7. Свойства глицерина. 8. Свойства формальдегида. 9. Свойства уксусной кислоты. 10. Свойства жиров. 11. Сравнение свойств растворов мыла и стирального порошка. 12. Свойства глюкозы. 13. Свойства крахмала.

Контрольная работа №2 по теме «Кислородсодержащие вещества.

Тема 4. Азотсодержащие соединения и их нахождение в живой природе (7 ч)

А м и н ы. Понятие об аминах. Получение ароматического амина - анилина - из нитробензола. Анилин как органическое основание. Взаимное влияние атомов в молекуле анилина: ослабление основных свойств и взаимодействие с бромной водой. Применение анилина на основе свойств.

Аминокислоты.

Получение аминокислот из карбоновых кислот и гидролизом белков.

Химические свойства аминокислот как амфотерных органических соединений: взаимодействие со щелочами, кислотами и друг с другом (реакция поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.

Б е л к и. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз и цветные реакции. Биохимические функции белков.

Нуклеиновые кислоты. Синтез нуклеиновых кислот в клетке из нуклеотидов. Общий план строения нуклеотида. Сравнение строения и функций РНК и ДНК. Роль нуклеиновых кислот в хранении и передаче наследственной информации. Понятие о биотехнологии и генной инженерии.

Демонстрации. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательство наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков: ксантопротеиновая и биуретовая. Горение птичьего пера и шерстяной нити. Модель молекулы ДНК.

Лабораторные опыты. 14. Свойства белков.

Практическая работа №1. Идентификация органических соединений.

Тема 5. Химия и жизнь. (10ч)

Биологически активные органические соединения Ф е р м е н т ы. Ферменты как биологические катализаторы белковой природы. Особенности функционирования ферментов. Роль ферментов в жизнедеятельности живых организмов и народном хозяйстве.

В и т а м и н ы. Понятие о витаминах. Нарушения, связанные с витаминами: авитаминозы, гиповитаминозы и гипервитаминозы. Витамин С как представитель водорастворимых витаминов и витамин А как представитель жирорастворимых витаминов.

Г о р м о н ы. Понятие о гормонах как гуморальных регуляторах жизнедеятельности живых организмов. Инсулин и адреналин как представители гормонов. Профилактика сахарного диабета.

Л е к а р с т в а. Лекарственная химия: от иатрохимии до химиотерапии. Аспирин. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба и профилактика.

Демонстрации. Разложение пероксида водорода каталазой сырого мяса и сырого картофеля. СМС, содержащих энзимы. Испытание среды раствора СМС индикаторной бумагой. Знакомство с образцами препаратов домашней, лабораторной и автомобильной аптечки.

Искусственные и синтетические полимеры И с к у с с т в е н н ы е п о л и м е р ы. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.

С и н т е т и ч е с к и е п о л и м е р ы. Получение синтетических полимеров реакциями полимеризации и поликонденсации. Структура полимеров линейная, разветвленная и пространственная. Представители синтетических пластмасс: полиэтилен низкого и высокого давления, полипропилен и поливинилхлорид. Синтетические волокна: лавсан, нитрон и капрон.

Демонстрации. Коллекция пластмасс и изделий из них. Коллекции искусственных и синтетически волокон и изделий из них.

Лабораторные опыты. 15. Ознакомление с образцами пластмасс, волокон и каучуков.

Практическая работа №2. Распознавание пластмасс и волокон.

Обобщение и повторенние -7ч

Решение задач и упражнений по курсу органической химии, подготовка, выполнение и анализ итоговой контрольной работы.

Контрольная работа №2 по теме: «Обобщение знаний по курсу органической химии»

Химия 11 класс (68ч) Теоретические основы химии

Тема 1. Строение атома и периодический закон Д. И. Менделеева (5 ч.).

Строение вещества. Современная модель строения атома. Электронная конфигурация атома. Основное и возбужденные состояния атомов. Классификация химических элементов (s-, p-, d-элементы). Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень . . Особенности строения электронных оболочек атомов элементов 4-го и 5-го периодов периодической системы Д. И. Менделеева (переходных элементов). Особенности строения энергетических уровней атомов д-элементов. Понятие об орбиталях. s- и p-орбитали. Электронные конфигурации атомов химических элементов.

Периодический закон Д.И. Менделеева в свете учения о строении атома.

Открытие Д. И. Менделеевым периодического закона. Периодическая система химических элементов Д. И. Менделеева - графическое отображение периодического закона. Физический смысл порядкового номера элемента, номера периода и номера группы. Валентные электроны. Причины изменения свойств элементов в периодах и группах (главных подгруппах).

Положение водорода в периодической системе. Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации. Различные формы периодической системы химических элементов Д. И. Менделеева.

Лабораторный опыт.

1. Конструирование периодической таблицы элементов с использованием карточек.

Тема 2. Строение вещества (20ч.)

Электронная природа химической связи. Электроотрицательность.Виды химической связи. Ионная химическая связь. Катионы и анионы. Классификация ионов. Ионные кристаллические решетки. Свойства веществ с этим типом кристаллических решеток.

Ковалентная химическая связь. Электроотрицательность. Полярная и неполярная ковалентные связи. Диполь. Полярность связи и полярность молекулы. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток. Металлическая химическая связь. Особенности строения атомов металлов. Металлическая химическая связь и металлическая кристаллическая решетка. Свойства веществ с этим типом связи. Водородная химическая связь. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации структур биополимеров.

Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические), их представители и применение.

Газообразное состояние вещества. Три агрегатных состояния воды. Особенности строения газов. Молярный объем газообразных веществ. Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и

борьба с ним. Представители газообразных веществ: водород, кислород, углекислый газ, аммиак, этилен. Их получение, собирание и распознавание.

Жидкое состояние вещества. Вода. Потребление воды в быту и на производстве. Жесткость воды и способы ее устранения. Минеральные воды, их использование в столовых и лечебных целях. Жидкие кристаллы и их применение.

Твердое состояние вещества. Аморфные твердые вещества в природе и в жизни человека, их значение и применение. Кристаллическое строение вещества.

Дисперсные системы. Понятие о дисперсных системах. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсной среды и дисперсионной фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли. Тонкодисперсные системы: гели и золи.

Состав вещества и смесей. Вещества молекулярного и немолекулярного строения. Закон постоянства состава веществ.

Понятие «доля» и ее разновидности: массовая (доля элементов в соединении, доля компонента в смеси - доля примесей, доля растворенного вещества в растворе) и объемная. Доля выхода продукта реакции от теоретически возможного.

Расчетные задачи.

- 1. Расчеты массовой доли (массы) химического соединения в смеси.
- 2. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного.
- 3. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Демонстрации.

Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молекулы ДНК. Образцы пластмасс (фенолоформальдегидные, полиуретан, полиэтилен, полипропилен, поливинилхлорид) и изделия из них. Образцы волокон (шерсть, шелк, ацетатное волокно, капрон, лавсан, нейлон) и изделия из них. Образцы неорганических полимеров (сера пластическая, кварц, оксид алюминия, природные алюмосиликаты). Модель молярного объема газов. Три агрегатных состояния воды. Образцы накипи в чайнике и трубах центрального отопления. Жесткость воды и способы ее устранения. Приборы на жидких кристаллах. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты.

- 2. Определение типа кристаллической решетки вещества и описание его свойств.
- 3. Ознакомление с коллекцией полимеров: пластмасс и волокон, и изделия из них.
- 4. Испытание воды на жесткость. Устранение жесткости воды.
- 5. Ознакомление с минеральными водами.
- 6. Ознакомление с дисперсными системами.

Практическая работа №1. Получение, собирание и распознавание газов.

Контрольная работа №1 по теме: «Строение вещества».

Тема 3. Химические реакции (22ч.)

Реакции, идущие без изменения состава веществ. Аллотропия и аллотропные видоизменения. Причины аллотропии на примере модификаций кислорода, углерода и фосфора. Озон, его биологическая роль. Изомеры и изомерия.

Реакции, идущие с изменение состава вещества. Реакции соединения, разложения, замещения и обмена в неорганической и органической химии.

Реакции экзо- и эндотермические. Тепловой эффект химической реакции и термохимические уравнения. Реакции горения, как частный случай экзотермических реакций.

Скорость химической реакции. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры, площади поверхности соприкосновения и катализатора. Реакции гомо- и гетерогенные. Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.

Обратимость химических реакций. Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака. Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.

Роль воды в химической реакции. Истинные растворы. Растворимость и классификация веществ по этому признаку: растворимые, малорастворимые и нерастворимые вещества.

Электролиты и неэлектролиты. Электролитическая диссоциация. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.

Химические свойства воды; взаимодействие с металлами, основными и кислотными оксидами, разложение и образование кристаллогидратов. Реакции гидратации в органической химии.

Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей. Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.

Окислительно-восстановительные реакции. Степень окисления. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.

Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.

Демонстрации. Превращение красного фосфора в белый. Озонатор. Модели молекул нбутана и изобутана. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми гранулами цинка и взаимодействия одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью катализатора (оксида марганца (IV)) и каталазы сырого мяса и сырого картофеля. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Взаимодействие лития и натрия с водой. Получение оксида фосфора (V) и растворение его в воде; испытание полученного раствора лакмусом. Образцы кристаллогидратов. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Гидролиз карбида кальция. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца (II). Получение мыла. Простейшие окислительно-восстановительные реакции; взаимодействие цинка с соляной кислотой и железа с раствором сульфата меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. 7. Реакция замещения меди железом в растворе медного купороса. 8. Реакции, идущие с образованием осадка, газа и воды. 9. Получение кислорода разложением пероксида водорода с помощью оксида марганца (IV) и каталазы сырого картофеля. 10. Получение водорода взаимодействием кислоты с цинком. 11. Различные случаи гидролиза солей.

Расчетные задачи. Расчет теплового эффекта реакции.

Контрольная работа №2потеме «Химические реакции»

Вещества и их свойства (15ч)

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Моделирование химических процессов и явлений, *химический анализ и синтез* как методы научного познания.

Металлы. Электрохимический ряд напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы зашиты металлов коррозии. Неметаллы. Окислительные свойства неметаллов (взаимодействие с металлами и водородом). Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).Кислоты неорганические и органические. Классификация кислот. Особые свойства азотной и концентрированной серной кислоты.Основания неорганические органические. Основания, их классификация. Химические свойства оснований. Соли. Классификация солей: средние, кислые и основные. Химические свойства солей.Генетическая связь между классами неорганических органических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии.

Демонстрации.

Коллекция образцов металлов. Горение магния и алюминия в кислороде. Взаимодействие щелочноземельных металлов с водой. Взаимодействие натрия с этанолом, цинка с уксусной кислотой. Взаимодействие меди с концентрированной азотной кислотой. Результаты коррозии металлов в зависимости от условий ее протекания. Коллекция образцов неметаллов. Взаимодействие хлорной воды с раствором бромида (иодида) калия. Коллекция природных органических кислот. Разбавление концентрированной серной кислоты. Взаимодействие концентрированной серной кислоты с сахаром, целлюлозой и медью. Образцы природных минералов, содержащих хлорид натрия, карбонат кальция, фосфат кальция и гидроксокарбонат меди (II). Образцы пищевых продуктов, содержащих гидрокарбонаты натрия и аммония, их способность к разложению при нагревании. Качественные реакции на катионы и анионы.

Лабораторные опыты.

- 12. Испытание растворов кислот, оснований и солей индикаторами.
- 13. Взаимодействие соляной кислоты и раствора уксусной кислоты с металлами.
- 14. Взаимодействие соляной кислоты и раствора уксусной кислоты с основаниями.
- 15. Взаимодействие соляной кислоты и раствора уксусной кислоты с солями.
- 16. Получение и свойства нерастворимых оснований.
- 17. Гидролиз хлоридов и ацетатов щелочных металлов.
- 18. Ознакомление с коллекциями: а) металлов; б) неметаллов; в) кислот; г) оснований; д) минералов и биологических материалов, содержащих некоторые соли.

Практическая работа №2.

Решение экспериментальных задач на идентификацию органических и неорганических соединений

Контрольная работа №3 по теме «Вещества и их свойства»

Повторение. Химия и жизнь (6ч)

Химия и здоровье. Лекарства. Пищевые добавки. Основы пищевой химии.

Химия в повседневной жизни. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми: репелленты, инсектициды. Средства личной гигиены и косметики. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Химия и сельское хозяйство. Минеральные и органические удобрения. Средства защиты растений.

Химия и энергетика. Природные источники углеводородов. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Химия в строительстве. Цемент. Бетон. Подбор оптимальных строительных материалов в практической деятельности человека.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Охрана гидросферы, почвы, атмосферы, флоры и фауны от химического загрязнения.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Класс	Название темы	Количество	Практическая	Контрольные
		часов	часть	работы
10	1. Введение	1	-	-
	2. Теория химического строения	3	-	-
	3.Углеводороды	21	-	1
	4. Кислородсодержащие соединения	20	-	1
	5. Азотсодержащие соединения	6	1	-
	6. Химия и жизнь	10	1	-
	7. Обобщение и повторение	7	-	1
	Итого	68	2	3
11	1.Строение атома	5	-	-
	2. Строение вещеста	20	1	1
	3. Химические реакции	22	-	1
	4.Вещества и их свойства	15	1	1
	5.Повторение.Химия и жизнь	6	-	-
	Итого	68	2	3